博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《常微分方程教程》习题2.4.1,(4)
阅读量:6536 次
发布时间:2019-06-24

本文共 7429 字,大约阅读时间需要 24 分钟。

tex文档:

1 \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size (remove a4paper for US letter paper)  2 \usepackage{amsmath,amsfonts,bm}  3 \usepackage{hyperref}  4 \usepackage{amsthm,epigraph}   5 \usepackage{amssymb}  6 \usepackage{framed,mdframed}  7 \usepackage{graphicx,color}   8 \usepackage{mathrsfs,xcolor}   9 \usepackage[all]{xy} 10 \usepackage{fancybox}  11 % \usepackage{xeCJK} 12 \usepackage{CJKutf8} 13 \newtheorem*{adtheorem}{定理} 14 % \setCJKmainfont[BoldFont=FZYaoTi,ItalicFont=FZYaoTi]{FZYaoTi} 15 \definecolor{shadecolor}{rgb}{
1.0,0.9,0.9} %背景色为浅红色 16 \newenvironment{theorem} 17 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{adtheorem}} 18 {\end{adtheorem}\end{mdframed}\bigskip} 19 \newtheorem*{bdtheorem}{定义} 20 \newenvironment{definition} 21 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{bdtheorem}} 22 {\end{bdtheorem}\end{mdframed}\bigskip} 23 \newtheorem*{cdtheorem}{习题} 24 \newenvironment{exercise} 25 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{cdtheorem}} 26 {\end{cdtheorem}\end{mdframed}\bigskip} 27 \newtheorem*{ddtheorem}{注} 28 \newenvironment{remark} 29 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{ddtheorem}} 30 {\end{ddtheorem}\end{mdframed}\bigskip} 31 \newtheorem*{edtheorem}{引理} 32 \newenvironment{lemma} 33 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{edtheorem}} 34 {\end{edtheorem}\end{mdframed}\bigskip} 35 \newtheorem*{pdtheorem}{例} 36 \newenvironment{example} 37 {\bigskip\begin{mdframed}[backgroundcolor=gray!40,rightline=false,leftline=false,topline=false,bottomline=false]\begin{pdtheorem}} 38 {\end{pdtheorem}\end{mdframed}\bigskip} 39 40 \usepackage[protrusion=true,expansion=true]{microtype} % Better typography 41 \usepackage{wrapfig} % Allows in-line images 42 \usepackage{mathpazo} % Use the Palatino font 43 \usepackage[T1]{fontenc} % Required for accented characters 44 \linespread{
1.05} % Change line spacing here, Palatino benefits from a slight increase by default 45 46 \makeatletter 47 \renewcommand\@biblabel[1]{\textbf{#1.}} % Change the square brackets for each bibliography item from '[1]' to '1.' 48 \renewcommand{\@listI}{\itemsep=0pt} % Reduce the space between items in the itemize and enumerate environments and the bibliography 49 50 \renewcommand{\maketitle}{ % Customize the title - do not edit title 51 % and author name here, see the TITLE block 52 % below 53 \renewcommand\refname{参考文献} 54 \newcommand{\D}{\displaystyle}\newcommand{\ri}{\Rightarrow} 55 \newcommand{\ds}{\displaystyle} \renewcommand{\ni}{\noindent} 56 \newcommand{\pa}{\partial} \newcommand{\Om}{\Omega} 57 \newcommand{\om}{\omega} \newcommand{\sik}{\sum_{i=1}^k} 58 \newcommand{\vov}{\Vert\omega\Vert} \newcommand{\Umy}{U_{\mu_i,y^i}} 59 \newcommand{\lamns}{\lambda_n^{^{\scriptstyle\sigma}}} 60 \newcommand{\chiomn}{\chi_{_{\Omega_n}}} 61 \newcommand{\ullim}{\underline{\lim}} \newcommand{\bsy}{\boldsymbol} 62 \newcommand{\mvb}{\mathversion{bold}} \newcommand{\la}{\lambda} 63 \newcommand{\La}{\Lambda} \newcommand{\va}{\varepsilon} 64 \newcommand{\be}{\beta} \newcommand{\al}{\alpha} 65 \newcommand{\dis}{\displaystyle} \newcommand{\R}{
{\mathbb R}} 66 \newcommand{\N}{
{\mathbb N}} \newcommand{\cF}{
{\mathcal F}} 67 \newcommand{\gB}{
{\mathfrak B}} \newcommand{\eps}{\epsilon} 68 \begin{flushright} % Right align 69 {\LARGE\@title} % Increase the font size of the title 70 71 \vspace{50pt} % Some vertical space between the title and author name 72 73 {\large\@author} % Author name 74 \\\@date % Date 75 76 \vspace{40pt} % Some vertical space between the author block and abstract 77 \end{flushright} 78 } 79 80 % ---------------------------------------------------------------------------------------- 81 % TITLE 82 % ---------------------------------------------------------------------------------------- 83 \begin{document} 84 \begin{CJK}{UTF8}{gkai} 85 \title{\textbf{《常微分方程教程》\cite{dinglichang}习题2.4.1,(4)}} 86 % \setlength\epigraphwidth{
0.7\linewidth} 87 \author{\small{叶卢庆}\\{\small{杭州师范大学理学院,学 88 号:1002011005}}\\{\small{Email:h5411167@gmail.com}}} % Institution 89 \renewcommand{\today}{\number\year. \number\month. \number\day} 90 \date{\today} % Date 91 92 % ---------------------------------------------------------------------------------------- 93 94 95 \maketitle % Print the title section 96 97 % ---------------------------------------------------------------------------------------- 98 % ABSTRACT AND KEYWORDS 99 % ----------------------------------------------------------------------------------------100 101 % \renewcommand{\abstractname}{摘要} % Uncomment to change the name of the abstract to something else102 103 % \begin{
abstract}104 105 % \end{
abstract}106 107 % \hspace*{
3,6mm}\textit{关键词:} % Keywords108 109 % \vspace{30pt} % Some vertical space between the abstract and first section110 111 % ----------------------------------------------------------------------------------------112 % ESSAY BODY113 % ----------------------------------------------------------------------------------------114 \begin{exercise}[2.4.1,(4)]115 求解下列微分方程:116 $$117 y'=x^3y^3-xy.118 $$119 \end{exercise}120 \begin{proof}[解]121 即为122 $$123 \frac{dy}{dx}=x^3y^3-xy.124 $$125 这是个 Bernoulli 方程.当 $y\neq 0$ 时,两边同时除以 $y^3$,可得126 $$127 \frac{
1}{y^3}\frac{dy}{dx}+\frac{
1}{y^2}x-x^3=0.128 $$129 令 $z=y^{-2}$,则130 $$131 \frac{dz}{dx}=-2y^{-3}\frac{dy}{dx},132 $$133 因此134 $$135 \frac{dz}{dx}-2zx+2x^3=0.136 $$137 这是个关于 $z,x$ 的一阶线性方程.可化为138 $$139 dz+(2x^3-2zx)dx=0.140 $$141 乘以积分因子 $u(x)$,则142 $$143 udz+u(2x^3-2zx)dx=0.144 $$145 令 146 $$147 \frac{du}{dx}=-2xu,148 $$149 不妨令 $u=e^{\int -2xdx}$.因此我们得到恰当方程150 $$151 e^{\int -2xdx}dz+e^{\int -2xdx}(2x^3-2zx)dx=0.152 $$153 其中两个 $e^{\int -2xdx}$ 是同一个函数.设存在二元函数 $\phi(x,y)$ 使得154 $$155 \frac{\pa\phi}{\pa z}=e^{\int -2xdx}\ri \phi=ze^{\int -2xdx}+f(x).156 $$157 因此158 $$159 -2xze^{\int -2xdx}+f'(x)=e^{\int -2xdx}(2x^3-2zx).160 $$161 可得162 $$163 f'(x)=2x^3e^{\int -2xdx}\ri f(x)=-x^2e^{\int -2xdx}-e^{\int -2xdx}+C.164 $$165 因此可得通积分为166 $$167 \phi\equiv ze^{\int -2xdx}-x^2e^{\int -2xdx}-e^{\int -2xdx}+C=0.168 $$169 其中三个 $e^{\int -2xdx}$ 都是同一个函数.将 $z=y^{-2}$ 代入,可得170 $$171 \frac{e^{\int -2xdx}}{y^2}-x^2e^{\int -2xdx}-e^{\int -2xdx}+C=0.172 $$173 其中三个 $e^{\int -2xdx}$ 都是同一个函数.不妨设 $\int -2xdx=-x^2+D$,因174 此可得175 $$176 \frac{e^{-x^2}}{y^2}-x^2e^{-x^2}-e^{-x^2}+C'=0.177 $$178 而当 $y=0$ 时,可得曲线为 $y=0$.179 \end{proof}180 % ----------------------------------------------------------------------------------------181 % BIBLIOGRAPHY182 % ----------------------------------------------------------------------------------------183 184 \bibliographystyle{unsrt}185 186 \bibliography{sample}187 188 % ----------------------------------------------------------------------------------------189 \end{CJK}190 \end{document}
View Code

 

转载于:https://www.cnblogs.com/yeluqing/p/3827327.html

你可能感兴趣的文章
Java反射机制详解(3) -java的反射和代理实现IOC模式 模拟spring
查看>>
NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战
查看>>
Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection
查看>>
《Python游戏编程快速上手》一1.3 如何使用本书
查看>>
《Visual Studio程序员箴言》----1.2 滚动与导航
查看>>
Processing编程学习指南2.7 Processing参考文档
查看>>
架构师速成-架构目标之伸缩性\安全性
查看>>
linux下ExtMail邮件使用及管理平台
查看>>
linux中iptables设置自建dns服务器的端口
查看>>
RT-Thread--时间管理
查看>>
BUPT 63T 高才生 找最佳基站
查看>>
linux 学习(二)防火墙
查看>>
android - SpannableString或SpannableStringBuilder以及string.xml文件中的整型和string型代替...
查看>>
三端稳压器各个参数解释
查看>>
算法(Algorithms)第4版 练习 1.3.14
查看>>
内部类
查看>>
高速数论变换(NTT)
查看>>
Springmvc的跳转方式
查看>>
加密原理介绍,代码实现DES、AES、RSA、Base64、MD5
查看>>
python 获取进程pid号
查看>>